Angiotensin-(1-7)/mas inhibits apoptosis in alveolar epithelial cells through upregulation of MAP kinase phosphatase-2.
نویسندگان
چکیده
Earlier work from this laboratory showed that autocrine generation of angiotensin II and c-Jun-NH2-terminal kinase phosphorylation (p-JNK) are both required events in alveolar epithelial cell (AEC) apoptosis. Although earlier data showed that angiotensin-(1-7) [ANG-(1-7)] protects against AEC apoptosis, the pathways by which ANG-(1-7)/mas activation prevent JNK phosphorylation and apoptosis are poorly understood. Therefore, in the current study, it was theorized that ANG-(1-7) activates a mitogen-activated protein kinase phosphatase (MKP) and thereby reduces JNK phosphorylation to inhibit apoptosis and promote cell survival. This hypothesis was evaluated in the human A549 and mouse MLE12 AEC lines and primary cultures of human AECs. Cells were transfected with small-interfering RNAs, antisense oligonucleotides, or inhibitors specific for MKP-2 or mas, and were then assayed for phospho-JNK, caspase-9, loss of mitochondrial membrane potential, and nuclear fragmentation. Silencing of MKP-2 significantly prevented the blockade of all apoptotic markers by ANG-(1-7). Knockdown or blockade of mas receptor by antisense oligonucleotides or by the receptor antagonist A779, respectively, caused significant decreases in MKP-2, and simultaneously increased the apoptotic markers of caspase-9 activation and nuclear fragmentation. These data show that the ANG-(1-7)/mas pathway constitutively prevents JNK phosphorylation and apoptosis of AECs by maintaining activation of the JNK-selective phosphatase MKP-2, and further demonstrate the critical role of the ANG-(1-7) receptor mas in AEC survival.
منابع مشابه
CALL FOR PAPERS Translational Research in Acute Lung Injury and Pulmonary Fibrosis Angiotensin-(1–7)/mas inhibits apoptosis in alveolar epithelial cells through upregulation of MAP kinase phosphatase-2
Gopallawa I, Uhal BD. Angiotensin-(1–7)/mas inhibits apoptosis in alveolar epithelial cells through upregulation of MAP kinase phosphatase-2. Am J Physiol Lung Cell Mol Physiol 310: L240–L248, 2016. First published December 4, 2015; doi:10.1152/ajplung.00187.2015.—Earlier work from this laboratory showed that autocrine generation of angiotensin II and c-Jun-NH2-terminal kinase phosphorylation (...
متن کاملAngiotensin receptor subtype AT(1) mediates alveolar epithelial cell apoptosis in response to ANG II.
Previous work from this laboratory demonstrated induction of apoptosis in lung alveolar epithelial cells (AEC) by purified angiotensin II (ANG II) and expression of mRNAs for both ANG II receptor subtypes AT(1) and AT(2) (Wang R, Zagariya A, Ibarra-Sunga O, Gidea C, Ang E, Deshmukh S, Chaudhary G, Baraboutis J, Filippatos G, and Uhal BD. Am J Physiol Lung Cell Mol Physiol 276: L885-L889, 1999.)...
متن کاملAbrogation of ER stress-induced apoptosis of alveolar epithelial cells by angiotensin 1-7.
Earlier work showed that apoptosis of alveolar epithelial cells (AECs) in response to endogenous or xenobiotic factors is regulated by autocrine generation of angiotensin (ANG) II and its counterregulatory peptide ANG1-7. Mutations in surfactant protein C (SP-C) induce endoplasmic reticulum (ER) stress and apoptosis in AECs and cause lung fibrosis. This study tested the hypothesis that ER stres...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 310 3 شماره
صفحات -
تاریخ انتشار 2016